3.118 \(\int \frac {1}{x \sqrt {a+b x+c x^2} (d+e x+f x^2)} \, dx\)

Optimal. Leaf size=451 \[ \frac {f \left (\sqrt {e^2-4 d f}+e\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac {f \left (e-\sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d} \]

[Out]

-arctanh(1/2*(b*x+2*a)/a^(1/2)/(c*x^2+b*x+a)^(1/2))/d/a^(1/2)+1/2*f*arctanh(1/4*(4*a*f+2*x*(b*f-c*(e-(-4*d*f+e
^2)^(1/2)))-b*(e-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2-(-b*f+c*e)*(-4*
d*f+e^2)^(1/2))^(1/2))*(e+(-4*d*f+e^2)^(1/2))/d*2^(1/2)/(-4*d*f+e^2)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2-(-b*f+
c*e)*(-4*d*f+e^2)^(1/2))^(1/2)-1/2*f*arctanh(1/4*(4*a*f-b*(e+(-4*d*f+e^2)^(1/2))+2*x*(b*f-c*(e+(-4*d*f+e^2)^(1
/2))))*2^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2+(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2))*(e-(-4*d
*f+e^2)^(1/2))/d*2^(1/2)/(-4*d*f+e^2)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2+(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 2.63, antiderivative size = 451, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {6728, 724, 206, 1032} \[ \frac {f \left (\sqrt {e^2-4 d f}+e\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac {f \left (e-\sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[a + b*x + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

-(ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])]/(Sqrt[a]*d)) + (f*(e + Sqrt[e^2 - 4*d*f])*ArcTanh[(4*
a*f - b*(e - Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e
*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[c*e^2
 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]) - (f*(e - Sqrt[e^2 - 4*d*f])*ArcTanh[(4*a*f - b
*(e + Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*
a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[c*e^2 - 2*c*
d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1032

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2])
, x], x] - Dist[(2*c*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1}{x \sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx &=\int \left (\frac {1}{d x \sqrt {a+b x+c x^2}}+\frac {-e-f x}{d \sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx}{d}+\frac {\int \frac {-e-f x}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{d}\\ &=-\frac {2 \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x}{\sqrt {a+b x+c x^2}}\right )}{d}-\frac {\left (f \left (1-\frac {e}{\sqrt {e^2-4 d f}}\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{d}-\frac {\left (f \left (1+\frac {e}{\sqrt {e^2-4 d f}}\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{d}\\ &=-\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d}+\frac {\left (2 f \left (1-\frac {e}{\sqrt {e^2-4 d f}}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e+\sqrt {e^2-4 d f}\right )+4 c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d}+\frac {\left (2 f \left (1+\frac {e}{\sqrt {e^2-4 d f}}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e-\sqrt {e^2-4 d f}\right )+4 c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d}\\ &=-\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d}+\frac {f \left (1+\frac {e}{\sqrt {e^2-4 d f}}\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} d \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}}}+\frac {f \left (1-\frac {e}{\sqrt {e^2-4 d f}}\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} d \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.41, size = 450, normalized size = 1.00 \[ \frac {\frac {\sqrt {2} f \left (\frac {\left (\sqrt {e^2-4 d f}-e\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (\sqrt {e^2-4 d f}+e-2 f x\right )-2 c x \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+x (b+c x)} \sqrt {f \left (2 a f-b \left (\sqrt {e^2-4 d f}+e\right )\right )+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {f \left (2 a f-b \left (\sqrt {e^2-4 d f}+e\right )\right )+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\left (\sqrt {e^2-4 d f}+e\right ) \tanh ^{-1}\left (\frac {4 a f+b \left (\sqrt {e^2-4 d f}-e+2 f x\right )+2 c x \left (\sqrt {e^2-4 d f}-e\right )}{2 \sqrt {2} \sqrt {a+x (b+c x)} \sqrt {f \left (2 a f+b \sqrt {e^2-4 d f}+b (-e)\right )+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {f \left (2 a f+b \sqrt {e^2-4 d f}+b (-e)\right )+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {e^2-4 d f}}-\frac {2 \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+x (b+c x)}}\right )}{\sqrt {a}}}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[a + b*x + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

((-2*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + x*(b + c*x)])])/Sqrt[a] + (Sqrt[2]*f*(((-e + Sqrt[e^2 - 4*d*f])*A
rcTanh[(4*a*f - 2*c*(e + Sqrt[e^2 - 4*d*f])*x - b*(e + Sqrt[e^2 - 4*d*f] - 2*f*x))/(2*Sqrt[2]*Sqrt[c*(e^2 - 2*
d*f + e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f - b*(e + Sqrt[e^2 - 4*d*f]))]*Sqrt[a + x*(b + c*x)])])/Sqrt[c*(e^2 - 2*d
*f + e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f - b*(e + Sqrt[e^2 - 4*d*f]))] + ((e + Sqrt[e^2 - 4*d*f])*ArcTanh[(4*a*f +
 2*c*(-e + Sqrt[e^2 - 4*d*f])*x + b*(-e + Sqrt[e^2 - 4*d*f] + 2*f*x))/(2*Sqrt[2]*Sqrt[f*(-(b*e) + 2*a*f + b*Sq
rt[e^2 - 4*d*f]) + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + x*(b + c*x)])])/Sqrt[f*(-(b*e) + 2*a*f + b*
Sqrt[e^2 - 4*d*f]) + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]))/Sqrt[e^2 - 4*d*f])/(2*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.02, size = 859, normalized size = 1.90 \[ -\frac {2 \sqrt {2}\, f \ln \left (\frac {\frac {\left (b f -c e -\sqrt {-4 d f +e^{2}}\, c \right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 a \,f^{2}-b e f -2 c d f +c \,e^{2}-\sqrt {-4 d f +e^{2}}\, b f +\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}+\frac {\sqrt {2}\, \sqrt {\frac {2 a \,f^{2}-b e f -2 c d f +c \,e^{2}-\sqrt {-4 d f +e^{2}}\, b f +\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}\, \sqrt {4 \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )^{2} c +\frac {4 \left (b f -c e -\sqrt {-4 d f +e^{2}}\, c \right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {4 a \,f^{2}-2 b e f -4 c d f +2 c \,e^{2}-2 \sqrt {-4 d f +e^{2}}\, b f +2 \sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\left (e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {2 a \,f^{2}-b e f -2 c d f +c \,e^{2}-\sqrt {-4 d f +e^{2}}\, b f +\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}}-\frac {2 \sqrt {2}\, f \ln \left (\frac {\frac {\left (b f -c e +\sqrt {-4 d f +e^{2}}\, c \right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 a \,f^{2}-b e f -2 c d f +c \,e^{2}+\sqrt {-4 d f +e^{2}}\, b f -\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}+\frac {\sqrt {2}\, \sqrt {\frac {2 a \,f^{2}-b e f -2 c d f +c \,e^{2}+\sqrt {-4 d f +e^{2}}\, b f -\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}\, \sqrt {4 \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )^{2} c +\frac {4 \left (b f -c e +\sqrt {-4 d f +e^{2}}\, c \right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {4 a \,f^{2}-2 b e f -4 c d f +2 c \,e^{2}+2 \sqrt {-4 d f +e^{2}}\, b f -2 \sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {2 a \,f^{2}-b e f -2 c d f +c \,e^{2}+\sqrt {-4 d f +e^{2}}\, b f -\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}}+\frac {4 f \ln \left (\frac {b x +2 a +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {a}}{x}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right ) \left (e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x)

[Out]

-2*f/(e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*2^(1/2)/((2*a*f^2-b*e*f-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*b*f+(-
4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*ln(((b*f-c*e-(-4*d*f+e^2)^(1/2)*c)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)/f+(2*a*f^
2-b*e*f-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e)/f^2+1/2*2^(1/2)*((2*a*f^2-b*e*f-2*c*d*f+c
*e^2-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4*(b*f-
c*e-(-4*d*f+e^2)^(1/2)*c)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)/f+2*(2*a*f^2-b*e*f-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)
*b*f+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))-2*f/(-e+(-4*d*f+e^2)^(1/2))/(-4*d*f
+e^2)^(1/2)*2^(1/2)/((2*a*f^2-b*e*f-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*ln
(((b*f-c*e+(-4*d*f+e^2)^(1/2)*c)*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)/f+(2*a*f^2-b*e*f-2*c*d*f+c*e^2+(-4*d*f+e^2)
^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e)/f^2+1/2*2^(1/2)*((2*a*f^2-b*e*f-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*b*f-(-4*d*
f+e^2)^(1/2)*c*e)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c+4*(b*f-c*e+(-4*d*f+e^2)^(1/2)*c)*(x-1/2*
(-e+(-4*d*f+e^2)^(1/2))/f)/f+2*(2*a*f^2-b*e*f-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e)/f^2
)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))+4*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))/a^(1/2)*ln((b*x
+2*a+2*(c*x^2+b*x+a)^(1/2)*a^(1/2))/x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{2} + b x + a} {\left (f x^{2} + e x + d\right )} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*(f*x^2 + e*x + d)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{x\,\sqrt {c\,x^2+b\,x+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + b*x + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)

[Out]

int(1/(x*(a + b*x + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \sqrt {a + b x + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x**2+b*x+a)**(1/2)/(f*x**2+e*x+d),x)

[Out]

Integral(1/(x*sqrt(a + b*x + c*x**2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________